
Service Function Architecture: System Design and
Implementation

Executive Summary

This document defines the technical architecture of a stateless cross-language function

service platform that eliminates cold starts through persistent Kubernetes deployments that

sleep while subscribed to pub/sub topics. Functions execute instantly on message receipt

with zero startup latency through an innovative container composition strategy and

integrated OIDC authorization system.

Key Architectural Strengths:

• Zero Latency: Instant function execution through sleeping pod model

• Enterprise Security: OIDC integration with RBAC enforcement at library level

• Operational Simplicity: Database-driven coordination reduces complexity

• Developer Productivity: Schema-driven code generation eliminates boilerplate

• Kubernetes Native: Leverages proven orchestration platform

• Multi-Language: Consistent experience across runtime environments

Operational Characteristics

Performance Metrics

Zero Cold Start Performance:

• Functions already running and subscribed to MQTT topics

• Instant message processing with sub-millisecond routing

• No container startup delays or initialization overhead

Throughput Capabilities:

• 1000+ requests/second per function instance

• Linear scaling with pod replicas

• Millions of requests/second per cluster

• EMQX broker handles millions of concurrent connections

Resource Efficiency:

1 Copyright @2024 ZBlox. All Rights Reserved

• Functions consume minimal resources while idle (sleeping state)

• No CPU usage during idle periods

• Memory-efficient message queuing and caching

• Shared base image caching reduces storage requirements

Enterprise Features

High Availability:

• Multi-replica function deployments with automatic failover

• Database clustering with automatic leader election

• Message delivery guarantees with replay protection

• Zero-downtime deployments through container lifecycle management

Security and Compliance:

• Enterprise OIDC integration with token introspection

• Fine-grained RBAC enforcement at library level

• Complete audit logging for compliance requirements

• Row-level security policies for data protection

Developer Experience:

• Single deployment process from source code to running function

• Automatic schema validation and code generation

• Rapid deployment cycles with immediate feedback (3-5 seconds)

• Consistent interfaces across multiple programming languages

System Architecture Overview

Core Components

The platform architecture centers around service functions as the primary computational

unit, supported by development and runtime services that manage the complete lifecycle

from source code to executing functions.

Service Functions: Stateless, event-driven functions that execute business logic in response

to MQTT messages. Functions run persistently in containers, maintaining subscriptions to

message topics for instant execution without cold start penalties.

2 Copyright @2024 ZBlox. All Rights Reserved

Application Development Service: Transforms source code into deployable container

images through schema-driven code generation, automated build processes, and multi-layer

container composition strategies.

Application Runtime Service: Manages function execution through sophisticated container

orchestration on isolated micro-VMs, handling deployment coordination, scaling, and

lifecycle management.

Common Reusable Libraries: Platform-provided libraries embedded in base container

images that provide unified interfaces for messaging, data access, and enterprise services

across all supported programming languages.

Service Functions

What are Service Functions

Core Concept: Service functions are stateless, event-driven computational units that

execute business logic in response to incoming messages. Unlike traditional serverless

functions that start on-demand, service functions run persistently as sleeping containers

subscribed to MQTT topics, enabling instant execution without cold start delays.

Developer Mental Model: Functions are written as regular class methods in any supported

programming language (.NET, Node.js, Python, Go, Java). Developers focus purely on

business logic while the platform handles infrastructure concerns like messaging, data

access, security, and scaling.

Function Characteristics:

• Stateless execution with external state managed through data interfaces

• Event-driven activation through MQTT message subscriptions

• Automatic parameter deserialization and response serialization

• Built-in authorization context from OIDC token validation

• Access to platform services through injected interface instances

Function Development Experience

Simple Function Structure: Functions are implemented as class methods with JSON schema

definitions for automatic parameter validation and code generation:

3 Copyright @2024 ZBlox. All Rights Reserved

Schema-Driven Development: JSON schemas define function contracts for automatic

validation, code generation, and type safety across language boundaries:

csharp

[ServiceFunction("UserService")]

public class UserService

{

private readonly IDataStore _dataStore;

private readonly IMessaging _messaging;

public UserService(IDataStore dataStore, IMessaging messaging)

{

 _dataStore = dataStore;

 _messaging = messaging;

}

[Function("createUser")]

public async Task<CreateUserResponse> CreateUser(CreateUserRequest request)

{

// Business logic with automatic authorization context

var userId = await _dataStore.Insert("users", new JsonObject

{

["email"] = request.Email,

["name"] = request.Name,

["createdAt"] = DateTime.UtcNow

});

// Platform messaging for notifications

await _messaging.Send("notifications", new Message

{

 Body = new { type = "user_created", userId = userId }

});

return new CreateUserResponse { UserId = userId };

}

}

4 Copyright @2024 ZBlox. All Rights Reserved

Dependency Injection: Platform interfaces are automatically injected with proper user

context and authorization:

• IDataStore - Database operations with automatic RBAC enforcement

• IMessaging - MQTT messaging with user context propagation

• IAuthorizer - Fine-grained permission management

• Platform APIs - Payment, logging, configuration services

Function Execution Model

Zero Cold Start Architecture: Functions run as persistent containers that maintain MQTT

subscriptions while in a sleeping state. When messages arrive, functions execute

immediately without container startup overhead or initialization delays.

Message-Driven Activation: Functions are activated through MQTT messages sent to

service-specific topics:

• Incoming calls routed to service/{serviceName} topics

• Functions process messages and send responses to caller-specified reply topics

• Event correlation through unique callId values for async patterns

• Automatic parameter extraction from client session state

Execution Context: Every function execution includes:

• UserContext: Validated OIDC identity with roles and permissions

• Platform Interfaces: Pre-configured with authorization and audit logging

• Message Metadata: CallId, reply topic, and correlation information

• Business Parameters: Deserialized and validated against function schemas

json

{

"CreateUserRequest": {

"type": "object",

"properties": {

"email": { "type": "string", "format": "email", "required": true },

"name": { "type": "string", "maxLength": 100, "required": true }

}

}

}

5 Copyright @2024 ZBlox. All Rights Reserved

Lifecycle Integration: Functions can trigger UI updates, send notifications, and call other

functions through the same messaging infrastructure, creating a cohesive event-driven

architecture.

Application Development Service

Code Ingestion

Upload Interface: Web-based interface accepts compressed source code archives with

automatic language detection and validation. The system analyzes code structure and

dependencies before initiating the build process.

VS Code Integration: Seamless connectivity between local development and platform build

infrastructure enables traditional IDE workflows with real-time synchronization, build

feedback, and remote development capabilities.

Multi-Language Support: Automatic detection and validation for .NET, Node.js, Python, Go,

and Java codebases with language-specific dependency analysis and optimization.

Build Pipeline

Schema-Driven Code Generation: The build process leverages JSON schemas and function

signatures to automatically generate integration code:

• Language-specific glue code for message handling and serialization

• Type-safe parameter validation and response formatting

• Automatic OIDC token validation and UserContext creation

• Platform interface wiring with dependency injection

Container Image Creation: Source code is packaged into minimal application layers that

overlay on pre-built base runtime images:

• Function business logic compiled into optimized application layers

• Generated integration code included in application package

• Environment-specific configuration and secrets management

• Interface compatibility validation for base runtime matching

Validation and Testing: Automated validation ensures function contracts are satisfied:

6 Copyright @2024 ZBlox. All Rights Reserved

• Schema validation for all function parameters and responses

• Interface compatibility checking with base runtime versions

• Dependency analysis for platform library requirements

• Basic integration testing with mock platform interfaces

Container Image Strategy

Base and Application Layer Separation: Revolutionary approach separates stable runtime

components from frequently changing application code:

Base Images (850MB+ cached locally):

• Language runtime environments with performance optimizations

• Platform integration libraries with embedded RBAC enforcement

• Common dependencies shared across multiple applications

• Pre-compiled authorization, messaging, and data access components

Application Layers (5-15MB frequently updated):

• Function business logic code only

• Generated integration and validation code

• Function-specific configuration and environment variables

• Minimal deployment artifacts for rapid updates

Registry Organization:

Deployment Coordination

Database-Driven Orchestration: Deployment coordination occurs through PostgreSQL

database state management rather than additional service layers, enabling atomic

operations and consistent cluster-wide coordination.

registry.company.com/

├── base/

│ ├── dotnet-runtime:v2.1.3 (850MB - Runtime + Platform Libraries)

│ ├── nodejs-runtime:v18.2.0 (720MB - Runtime + Platform Libraries)

│ └── python-runtime:v3.11.1 (680MB - Runtime + Platform Libraries)

└── apps/

├── order-service:v1.2.5 (8MB - Function Code Only)

 ├── user-service:v2.1.0 (12MB - Function Code Only)

 └── payment-service:v1.0.8 (6MB - Function Code Only)

7 Copyright @2024 ZBlox. All Rights Reserved

Application Catalog Schema:

Interface Compatibility Management: Base runtime updates use interface hash

comparison to determine compatibility, enabling automatic deployment of compatible

updates while requiring explicit approval for breaking changes.

Application Runtime Service

Runtime Environment

Kubernetes Deployment on Isolated Micro-VMs: The runtime service operates as

sophisticated container orchestration deployed on Kubernetes with function containers

running in isolated micro-VMs for enhanced security and resource isolation.

Container Pool Architecture: Maintains pools of ready-to-execute function containers that

sleep while subscribed to MQTT topics. This approach eliminates cold start penalties while

providing instant scaling capabilities through pre-warmed container capacity.

High Availability Design: Multi-replica deployments with automatic failover, health

monitoring, and graceful degradation ensure continuous function availability even during

infrastructure failures or maintenance operations.

Runtime Image Architecture

Local Image Composition: Rather than pulling complete container images, the runtime

performs local composition of base runtime images with application layers using BuildKit

optimization:

Base Image Components:

sql

CREATE TABLE application_catalog (

 app_name VARCHAR(255),

 version VARCHAR(100),

 app_layer_image VARCHAR(500), -- registry path to application layer

 base_image VARCHAR(500), -- base runtime image reference

 interface_hash VARCHAR(100), -- for compatibility checking

 schema_definition JSONB, -- function schemas and contracts

 topic_mappings JSONB, -- MQTT topic configuration

 created_at TIMESTAMP,

status VARCHAR(50), -- built, tested, approved, deprecated

PRIMARY KEY (app_name, version)

);

8 Copyright @2024 ZBlox. All Rights Reserved

• Language runtime environments (.NET, Node.js, Python, Go, Java)

• Platform integration libraries with embedded RBAC enforcement

• Common dependencies and performance optimizations

• Pre-compiled authorization, messaging, and data access libraries

Application Layer Components:

• Function business logic code only

• Generated integration bindings and validation code

• Function-specific configuration and environment variables

• Minimal deployment artifacts (typically 5-15MB)

Performance Benefits: This composition strategy delivers:

• 95%+ reduction in network transfer for application updates

• Sub-5-second deployment times leveraging cached base images

• 99% cache hit rates for base layers in typical deployments

• Efficient storage utilization through shared base image caching

Deployment Process

BuildKit-Powered Composition: Sidecar containers perform local image composition using

BuildKit, Docker's optimized build engine:

1. Base Image Verification: Confirm required base runtime image is cached locally

2. Application Layer Pull: Download minimal application layer (if not cached)

3. Layer Composition: Merge base and application layers into executable image

4. Container Start: Launch composed image with full runtime environment

Atomic Deployment Coordination: Database-driven assignment prevents deployment

conflicts:

9 Copyright @2024 ZBlox. All Rights Reserved

Zero-Downtime Updates: New versions are deployed through container restart isolation

while maintaining message subscription continuity through MQTT broker persistence.

Container Lifecycle

Monitoring State: Containers start in monitoring mode, actively polling the deployment

database for assignment opportunities. This represents the platform's pool of available

execution capacity.

Claiming Process: Atomic database operations prevent deployment conflicts:

1. Sidecar detects available deployment in database (5-second polling)

2. Claims deployment by writing pod_id to assignment record

3. Identifies required base runtime and application image versions

4. Verifies interface compatibility between base and application layers

Deploying State: Local image composition and container preparation:

1. Sidecar performs BuildKit composition of base + application layers

2. Stops any existing main container to ensure clean isolation

3. Starts new main container with locally composed runtime image

4. Establishes MQTT connections and platform service integrations

Serving State: Active function execution with zero latency:

1. Main container subscribes to service-specific MQTT topics

2. Begins processing function calls with instant message handling

3. Maintains subscription and readiness until redeployment

4. Handles graceful shutdown and state cleanup during lifecycle transitions

sql

CREATE TABLE application_deployments (

 app_name VARCHAR(255) PRIMARY KEY,

 target_version VARCHAR(100) NULL, -- NULL = monitoring mode

 deployment_action VARCHAR(20) DEFAULT 'deploy',

 assigned_pod_id VARCHAR(255), -- pod claiming this deployment

 updated_at TIMESTAMP DEFAULT NOW(),

 deployed_by VARCHAR(255)

);

10 Copyright @2024 ZBlox. All Rights Reserved

Full Container Restart Strategy: The platform uses complete container restarts for all

deployments rather than in-process code reloading. This architectural decision prioritizes

simplicity, reliability, and perfect isolation:

• Perfect Isolation: Each deployment creates a completely clean execution environment

with no state carryover from previous versions

• Predictable Behavior: Eliminates complexity from in-memory state management,

memory leaks, and partial reload failures

• Universal Language Support: Works consistently across all supported runtimes (.NET,

Node.js, Python, Go, Java) without language-specific hot reload implementations

• Operational Simplicity: Failed deployments never corrupt running state, and

troubleshooting is straightforward with clean process boundaries

• Enterprise Reliability: Meets enterprise requirements for deterministic behavior and

complete audit trails

The 3-5 second restart cycle provides rapid deployment feedback while maintaining the

platform's core principles of simplicity and reliability over marginal performance

optimization.

Message Loss and Recovery

Container restarts, whether intentional for new deployments or accidental due to

infrastructure issues, present a fundamental challenge for maintaining message delivery

guarantees. The platform addresses this challenge through a combination of messaging

infrastructure capabilities and application-level deduplication strategies.

Challenge: Container restarts cause in-flight message loss for non-idempotent operations.

Solution - At-Least-Once Delivery with Deduplication: The platform leverages MQTT's

built-in reliability features combined with application-level deduplication to ensure that no

messages are permanently lost while preventing duplicate processing. This approach

maintains the stateless nature of functions while providing strong delivery guarantees.

1. Use MQTT QoS 1/2 for guaranteed message delivery

2. Each message includes unique callId (cryptographic nonce)

3. Functions store processed callId values in persistent storage

4. On restart, MQTT redelivers unacknowledged messages

5. Functions deduplicate using callId history

6. Expired callId records cleaned up automatically

11 Copyright @2024 ZBlox. All Rights Reserved

Connection establishment occurs early in the container lifecycle to ensure that functions are

immediately ready to process messages upon deployment, while connection pooling and

persistence minimize the overhead associated with message handling.

Startup Sequence: The connection establishment follows a precise sequence that ensures

all infrastructure is ready before the function begins processing business logic. This

approach eliminates race conditions and provides predictable behavior during both initial

deployment and restart scenarios.

1. Main container establishes MQTT connection

2. Subscribes to service topic matching application name

3. Clients generate unique session topics for responses

4. Multiple functions in same service share single topic subscription

Multi-Function Routing: A single service can host multiple related functions, with intelligent

message routing directing each incoming message to the appropriate function

implementation. This approach optimizes resource utilization while maintaining logical

separation between different function concerns.

• Service-level glue code routes messages to appropriate functions

• Based on message content or headers

• Single container can host multiple related functions

Scaling and Resource Management

Container Pool Strategy

The platform employs different scaling strategies based on customer requirements and

usage patterns. This flexible approach allows for cost optimization in smaller deployments

while providing the dynamic scaling capabilities needed for large-scale production

workloads.

Small Customers: For smaller deployments with predictable workloads, the platform uses a

fixed container pool approach that provides cost predictability and simplified resource

management. This strategy works well for applications with consistent traffic patterns and

well-understood resource requirements.

• Fixed container pool size per node

• Predictable resource allocation

• Cost-effective for consistent workloads

12 Copyright @2024 ZBlox. All Rights Reserved

Large Customers: Large-scale deployments leverage Kubernetes' native horizontal pod

autoscaler with custom metrics to provide dynamic scaling based on actual demand. This

approach ensures optimal resource utilization while maintaining the ability to handle traffic

spikes and varying workload patterns.

• Kubernetes Horizontal Pod Autoscaler (HPA)

• Custom metrics based on unassigned deployments

• Dynamic scaling based on demand

Scaling Triggers

The platform's scaling system responds to multiple metrics that indicate when additional

capacity is needed. Rather than relying solely on traditional CPU and memory metrics, the

system monitors deployment-specific indicators that provide earlier and more accurate

signals for scaling decisions.

Pod Scaling: The primary scaling trigger monitors the availability of unassigned containers

ready to accept new deployments. By maintaining a pool of ready containers, the platform

ensures that new function deployments can be activated immediately without waiting for

container startup overhead.

• Monitor count of unassigned containers waiting for deployments

• Scale when unassigned pool drops below threshold

• Ensures rapid deployment capability

Node Scaling: When pod scaling reaches the limits of available node capacity, the cluster

autoscaler creates additional nodes to accommodate the increased demand. This multi-level

scaling approach provides both rapid response and cost-effective resource management.

• Kubernetes Cluster Autoscaler

• Based on pod scheduling pressure

• Manual circuit breaker for cost protection

Scaling Metrics:

13 Copyright @2024 ZBlox. All Rights Reserved

Security Architecture

Authentication Flow

OIDC Integration: All MQTT messages include OIDC bearer tokens in message headers.

Service functions extract UserContext through standard OIDC introspection endpoints using

authorization server protocols.

Message Envelope Structure:

yaml

Custom HPA configuration

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

name: function-runtime-hpa

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: function-runtime

minReplicas: 10

maxReplicas: 100

metrics:

- type: Pods

pods:

metric:

name: unassigned_containers

target:

type: AverageValue

averageValue: "5" # Maintain 5 unassigned containers per pod

14 Copyright @2024 ZBlox. All Rights Reserved

UserContext Validation: Service functions validate tokens through OIDC introspection and

create UserContext objects:

Authorization Model

Factory Pattern Integration: Platform interfaces create instances with embedded

authorization context:

• IDataStoreFactory.CreateDataStore(UserContext) - Database access with automatic RBAC

• IMessagingFactory.CreateMessaging(UserContext) - Messaging with user context

• IAuthorizerFactory.CreateAuthorizer(UserContext) - RBAC operations

RBAC Enforcement: Authorization occurs within common libraries embedded in base

container images, providing consistent security across all operations without performance

overhead.

Authorization Interfaces

json

{

"messageId": "uuid-12345",

"callId": "crypto-nonce-abcdef",

"replyTo": "event/12345/response",

"headers": {

"authorization": "Bearer eyJhbGciOiJSUzI1NiIs...",

"content-type": "application/json"

},

"body": { "function": "createUser", "parameters": {...} }

}

csharp

public class UserContext

{

public string UserId { get; set; }

public string Email { get; set; }

public List<string> Roles { get; set; }

public List<string> Groups { get; set; }

public string Token { get; set; }

public bool HasRole(string role) => Roles.Contains(role);

}

15 Copyright @2024 ZBlox. All Rights Reserved

Container Security

Defense in Depth: Multi-layered security including Kubernetes network policies for pod

isolation, TLS encryption for all message traffic, read-only root filesystems, non-root

container users, and comprehensive image vulnerability scanning.

Secret Management: Kubernetes Secrets manage database connections, EMQX credentials,

registry access tokens, and OIDC configuration with automated rotation policies and audit

logging.

Data Persistence

Document-Oriented Storage

Functions access structured, schema-validated document storage with built-in authorization.

Core Interface:

csharp

public interface IAuthenticatorFactory

{

IAuthenticator CreateAuthenticator(string oidcConfigUrl);

}

public interface IAuthenticator

{

UserContext? ValidateToken(string token);

}

public interface IAuthorizerFactory

{

IAuthorizer CreateAuthorizer(UserContext userContext);

}

public interface IAuthorizer

{

Task<bool> AssignRoleToUser(string user, string role, string database, string? collection = null);

Task<bool> RemoveRoleFromUser(string user, string role, string database, string? collection = null);

Task<bool> HasRole(string user, string role, string database, string? collection = null);

Task<bool> AssignPermissionsToUser(string user, IEnumerable<string> permissions, string database, string

Task<bool> RemovePermissionsFromUser(string user, IEnumerable<string> permissions, string database

Task<bool> HasPermission(string user, string permission, string database, string? collection = null);

}

16 Copyright @2024 ZBlox. All Rights Reserved

Security Integration:

• All operations mediated through UserContext

• Row-level security based on user roles

• Automatic audit trail for data access

Core Runtime Interfaces

Messaging Interface

Authentication Interface

Authorization Interface

csharp

public interface IDataStore

{

Task<string> Insert(string collectionName, JsonObject document);

Task<bool> Update(string collectionName, Query query, JsonObject updatedDocument);

Task<bool> Delete(string collectionName, Query query);

Task<List<JsonObject>> Query(string collectionName, Query query, int pageNumber, int pageSize, out

Task<JsonObject?> GetById(string collectionName, string id);

}

csharp

public interface IMessaging

{

Task Send(string topic, Message message, IDictionary<string, string>? headers = null);

Task<Message> SendAndWait(string topic, Message request, TimeSpan timeout, IDictionary<string, string

Task<Message> Receive(string topic, IDictionary<string, string>? headers = null);

void Subscribe(string topic, Func<Message, Task> onMessage, IDictionary<string, string>? headers = null

void AddHook(HookType type, Func<Message, Task> hook);

Task SendBinary(string topic, byte[] data, IDictionary<string, string>? headers = null, int chunkSize = 1024

Task<byte[]> ReceiveBinary(string topic, IDictionary<string, string>? headers = null);

}

csharp

public interface IAuthenticator

{

UserContext? ValidateToken(string token);

}

17 Copyright @2024 ZBlox. All Rights Reserved

Operational Characteristics

Performance Metrics

The platform's performance characteristics reflect its fundamental architectural decisions,

particularly the elimination of cold starts and the use of high-performance messaging

infrastructure. These metrics demonstrate the practical benefits of the sleeping pod model

and pub/sub messaging approach.

Latency: The platform achieves true zero cold start performance by maintaining functions in

a ready state, subscribed to their message topics and prepared for immediate execution.

Combined with sub-millisecond message routing, this approach provides consistently low

latency regardless of function idle time.

• Zero cold start (functions already running)

• Sub-millisecond message routing

• Direct function execution without container startup

Throughput: Function throughput scales linearly with the number of deployed pod replicas,

with each instance capable of high message processing rates. The combination of persistent

connections and efficient message handling enables sustained high-throughput operation.

• 1000+ requests/second per function instance

• Linear scaling with pod replicas

• Millions of requests/second per cluster

Resource Efficiency: The sleeping pod model provides exceptional resource efficiency by

consuming minimal resources during idle periods while maintaining instant readiness for

execution. This approach eliminates the resource overhead associated with traditional cold

start architectures.

csharp

public interface IAuthorizer

{

Task<bool> AssignRoleToUser(string user, string role, string database, string? collection = null);

Task<bool> RemoveRoleFromUser(string user, string role, string database, string? collection = null);

Task<bool> HasRole(string user, string role, string database, string? collection = null);

Task<bool> AssignPermissionsToUser(string user, IEnumerable<string> permissions, string database, string

Task<bool> RemovePermissionsFromUser(string user, IEnumerable<string> permissions, string database

Task<bool> HasPermission(string user, string permission, string database, string? collection = null);

}

18 Copyright @2024 ZBlox. All Rights Reserved

• Functions consume minimal resources while sleeping

• No CPU usage during idle periods

• Memory-efficient message queuing

Monitoring and Observability

The platform provides comprehensive monitoring and observability capabilities that give

operators deep insight into both infrastructure performance and application behavior. This

monitoring system is designed to support both reactive troubleshooting and proactive

performance optimization.

Metrics Collection: The monitoring system collects metrics at multiple levels of the

platform stack, from individual function performance through infrastructure utilization. This

comprehensive approach enables both detailed debugging and high-level capacity planning.

• Function invocation rates and latency

• Message queue depths and throughput

• Container resource utilization

• Deployment success/failure rates

Health Monitoring: Continuous health monitoring ensures that all platform components are

operating correctly and provides early warning of potential issues. The health monitoring

system tracks both infrastructure components and application-level indicators.

• MQTT connection health

• Database connectivity

• Function response times

• Container restart frequency

Audit Trail: The platform maintains comprehensive audit logs that track all significant events

from deployment through function execution. This audit capability supports both security

analysis and operational troubleshooting.

• Complete deployment history

• Function execution logs

• Authorization decision logging

• Security event tracking

Error Handling

19 Copyright @2024 ZBlox. All Rights Reserved

Function Errors:

Recovery Mechanisms:

• Automatic function restart on failure

• Message retry with exponential backoff

• Circuit breaker patterns for cascading failures

• Dead letter queues for problematic messages

Deployment Orchestration

Development to Production Pipeline

1. Code Upload: Developer uploads source via web interface or VS Code

2. Build Process: Development service generates glue code and builds application layer

3. Registry Storage: Application layer stored as container image

4. Deployment Record: Entry created in application_catalog table

5. Deployment Trigger: Operations team updates application_deployments table

6. Runtime Detection: Sidecar containers detect new deployment assignment

7. Image Pull: Sidecar pulls application layer from registry

8. Container Restart: Main container restarts with new application layer

9. Service Activation: Function subscribes to MQTT topics and begins processing

Rollback Capabilities

Version Management:

• All versions preserved in application catalog

• Point-in-time rollback by updating deployment table

• Automatic rollback on health check failures

csharp

public enum ErrorType

{

 ValidationError, // Invalid input data

 BusinessLogicError, // Domain rule violation

 SystemError, // Infrastructure failure

 TimeoutError // Execution timeout

}

20 Copyright @2024 ZBlox. All Rights Reserved

Blue/Green Deployments:

• Multiple versions can run simultaneously

• Traffic routing via message topic configuration

• Gradual migration between versions

Scalability Considerations

Horizontal Scaling

Function Scaling:

• Each function can run multiple pod replicas

• MQTT load balancing distributes messages across replicas

• No session affinity required due to stateless design

Infrastructure Scaling:

• Kubernetes cluster autoscaling based on resource pressure

• EMQX broker clustering for message throughput

• Database read replicas for deployment coordination

Resource Optimization

Container Pool Management:

• Right-sizing based on historical usage patterns

• Vertical Pod Autoscaler for optimal resource allocation

• Spot instance utilization for cost optimization

Message Broker Optimization:

• Connection pooling and multiplexing

• Message batching for throughput optimization

• Persistent connections to reduce overhead

Security Implementation Details

Network Security

Kubernetes Network Policies:

21 Copyright @2024 ZBlox. All Rights Reserved

TLS Configuration:

• End-to-end encryption for all message traffic

• Certificate rotation and management

• Mutual TLS for service-to-service communication

Secret Management

Kubernetes Secrets: The platform leverages Kubernetes' native secret management

capabilities to provide secure access to sensitive configuration data. Secrets are injected into

function containers through standard Kubernetes mechanisms, ensuring that sensitive data

never appears in application code or container images.

• Database connection strings

• EMQX broker credentials

• Container registry access tokens

• OIDC provider configuration

yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

name: function-isolation

spec:

podSelector:

matchLabels:

app: function-runtime

policyTypes:

- Ingress

- Egress

ingress:

- from:

- podSelector:

matchLabels:

app: emqx-broker

ports:

- protocol: TCP

port: 1883

22 Copyright @2024 ZBlox. All Rights Reserved

Secret Rotation: The architecture supports automated secret rotation through Kubernetes

operators and external secret management systems. This capability ensures that functions

can receive updated credentials without requiring redeployment or manual intervention.

• Automated secret rotation policies

• Zero-downtime secret updates

• Audit logging for secret access

Configuration Management

Environment-Specific Configuration: Functions receive configuration through a

combination of environment variables and configuration files mounted as Kubernetes

ConfigMaps. This approach separates environmental concerns from application logic while

providing type-safe access to configuration data.

Runtime Configuration Updates: The platform supports dynamic configuration updates

through ConfigMap changes, with functions receiving notifications of configuration changes

through the messaging infrastructure. This capability enables feature flag toggling and

configuration tuning without function redeployment.

Testing Architecture

Local Development Testing: The platform provides local testing capabilities through

containerized development environments that mirror the production messaging and data

access patterns. Developers can run functions locally while connecting to development

instances of the messaging broker and database systems.

yaml

Example function configuration

apiVersion: v1

kind: ConfigMap

metadata:

name: order-service-config

data:

environment: "production"

api-timeout: "30s"

batch-size: "100"

feature-flags.json: |

 {

 "enableNewPricing": true,

 "enableCaching": false

 }

23 Copyright @2024 ZBlox. All Rights Reserved

Integration Testing Framework: The testing architecture includes capabilities for

integration testing of functions within the actual platform environment. Test frameworks

can deploy functions to isolated testing environments and validate behavior through the

same messaging interfaces used in production.

Test Isolation: The architecture provides test isolation through dedicated testing topics and

database namespaces, ensuring that test execution does not interfere with production

operations or other test runs.

Schema Evolution and Versioning

Schema Versioning Strategy: The platform implements a comprehensive schema versioning

system that enables backward-compatible evolution of function interfaces. Schema versions

are tracked in the application catalog and validated during both build and runtime phases.

csharp

// Example integration test

[Test]

public async Task OrderProcessing_ValidOrder_ReturnsSuccess()

{

// Arrange

var testMessage = CreateTestOrderMessage();

// Act

var response = await messaging.SendAndWait(

"service/order-service",

 testMessage,

 TimeSpan.FromSeconds(10));

// Assert

 Assert.That(response.Status, Is.EqualTo("success"));

}

24 Copyright @2024 ZBlox. All Rights Reserved

Migration Architecture: The platform supports running multiple versions of functions

simultaneously during migration periods, with message routing determining which version

processes each request based on client capabilities or explicit version requests.

Database Schema Migration: For data persistence schemas, the platform provides

migration tools that can evolve database schemas while maintaining data integrity.

Migration scripts are versioned alongside application code and executed automatically

during deployment.

Disaster Recovery

json

{

"schemaVersion": "2.1.0",

"backwardCompatible": ["2.0.0", "1.9.0"],

"functions": {

"processOrder": {

"input": "ProcessOrderRequest_v2",

"output": "ProcessOrderResponse_v2"

}

}

}

csharp

// Example schema migration

public class Migration_2_1_0 : IMigration

{

public async Task Up(IDataDefinition dataDefinition)

{

await dataDefinition.AddColumnToCollection(

"orders",

"priority",

 JsonType.String,

defaultValue: "normal");

}

public async Task Down(IDataDefinition dataDefinition)

{

await dataDefinition.RemoveColumnFromCollection("orders", "priority");

}

}

25 Copyright @2024 ZBlox. All Rights Reserved

Backup Strategy

Application Code:

• Source code versioned in development service

• Container images stored in replicated registry

• Database backups of deployment coordination tables

Runtime State:

• Function execution logs

• Message delivery confirmations

• Audit trail preservation

Recovery Procedures

Component Failures:

• EMQX broker clustering provides automatic failover

• Kubernetes pod restart handles container failures

• Database clustering ensures coordination layer availability

Regional Failures:

• Multi-region cluster deployment

• Cross-region container registry replication

• Disaster recovery runbooks and automation

Performance Optimization

Message Routing Optimization

Connection Management:

• Persistent MQTT connections reduce handshake overhead

• Connection pooling for high-throughput scenarios

• Keep-alive optimization for long-running functions

Serialization Optimization:

26 Copyright @2024 ZBlox. All Rights Reserved

• Schema-driven code generation produces optimized serializers

• Binary message support for large payloads

• Compression for bandwidth optimization

Container Optimization

Image Layering Strategy: The platform's registry and caching strategy is designed around

the principle that base runtime images change infrequently while application code changes

constantly.

This insight drives an architecture that separates these concerns at the registry level while

composing them efficiently at deployment time.

The registry maintains base runtime images (containing language runtimes, core libraries,

and platform integration code) separately from application images (containing only function

code and generated glue). This separation enables several key optimizations:

• Minimal Transfer: Only application layers (typically <10MB) transfer for most

deployments

• Cache Efficiency: Base layers remain cached across all application updates

• Parallel Updates: Base runtime updates don't require application rebuilds

• Security Scanning: Independent scanning schedules for stable vs. changing components

BuildKit Optimization: BuildKit's layer-aware caching and composition engine provides

optimal performance for the local image composition process. The system leverages

BuildKit's ability to reuse cached layers and perform incremental builds, typically completing

image composition in 1-3 seconds.

• Optimized layer ordering for cache efficiency

• Minimal application images reduce composition overhead

• BuildKit's incremental composition capabilities

• Local cache management reduces redundant operations

Runtime Optimization: Container startup optimization focuses on reducing the overhead

associated with runtime initialization and platform integration. The composed images are

structured to enable rapid startup while maintaining full platform capabilities.

27 Copyright @2024 ZBlox. All Rights Reserved

• Platform libraries pre-initialized in base layers

• JIT compilation warming for managed runtimes

• Connection pool pre-warming for messaging infrastructure

• Optimized container resource allocation

Future Architecture Considerations

Planned Enhancements

WebAssembly Support:

• WASM runtime for truly polyglot functions

• Improved isolation and security model

• Cross-platform compatibility

Edge Deployment:

• Function deployment to edge locations

• Latency optimization for global applications

• Bandwidth-aware message routing

Stream Processing:

• Native support for event stream processing

• Windowing and aggregation functions

• Real-time analytics capabilities

Extensibility Points

Plugin Architecture:

• Custom authentication providers

• Additional messaging protocols

• External storage integrations

API Extensions:

• Custom function interfaces beyond core set

• Domain-specific libraries and tools

• Integration marketplace ecosystem

Conclusion

28 Copyright @2024 ZBlox. All Rights Reserved

This Service Function Architecture provides a robust foundation for serverless computing

that eliminates cold start penalties while maintaining operational simplicity. The database-

driven deployment model, combined with multi-layered container architecture, enables

rapid development iteration without sacrificing production security or performance.

Key Architectural Strengths:

• Zero Latency: Instant function execution through sleeping pod model

• Enterprise Security: Defense-in-depth with comprehensive audit trails

• Operational Simplicity: Database-driven coordination reduces complexity

• Developer Productivity: Schema-driven code generation eliminates boilerplate

• Kubernetes Native: Leverages proven orchestration platform

• Multi-Language: Consistent experience across runtime environments

The architecture addresses the fundamental limitations of traditional FaaS platforms while

providing a clear path for scaling to enterprise requirements. The separation of concerns

between development and runtime services creates a flexible platform suitable for diverse

deployment scenarios from small applications to large-scale distributed systems.

29 Copyright @2024 ZBlox. All Rights Reserved

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

