
Operations and Deployment Runbook

Operational Procedures for Service Function Architecture Platform

Executive Summary

This runbook provides comprehensive operational procedures for the Service Function

Architecture platform. It covers all aspects of platform operations including infrastructure

management, service deployment, monitoring, backup and recovery, and incident response.

Key Components:

• RKE2 Kubernetes Cluster Management: Node operations, upgrades, and

troubleshooting

• Database Operations: PostgreSQL, MongoDB, and Redis cluster management

• EMQX Message Broker Operations: Cluster health, scaling, and maintenance

• Service Function Deployment: Rolling updates, rollbacks, and scaling procedures

• Monitoring and Alerting: System health, performance monitoring, and incident

response

• Backup and Recovery: Data protection, disaster recovery, and business continuity

Operational Principles:

• Infrastructure as Code for all components

• Automated monitoring with proactive alerting

• Zero-downtime deployments and maintenance

• Comprehensive backup and recovery procedures

• Clear escalation paths and incident response

Infrastructure Overview

Platform Components

Core Infrastructure:

 Copyright @2024 ZBlox. All Rights Reserved 1

• RKE2 Kubernetes cluster (3 control plane, 6+ worker nodes)

• PostgreSQL cluster (3-node Patroni setup)

• MongoDB replica set (3-node primary/secondary)

• Redis cluster (3-node for transaction coordination)

• EMQX MQTT broker cluster (3-node)

• MinIO object storage cluster (4-node)

Supporting Services:

• HAProxy load balancers

• Prometheus/Grafana monitoring stack

• Loki log aggregation

• Container registry (Harbor or equivalent)

• Backup storage systems

Network Architecture:

• Three-tier network design (DMZ, Application, Data)

• Internal DNS and service discovery

• TLS termination and certificate management

• Firewall rules and network policies

RKE2 Kubernetes Operations

Cluster Health Monitoring

Daily Health Checks:

 Copyright @2024 ZBlox. All Rights Reserved 2

Key Metrics to Monitor:

• Node status and resource utilization (CPU, memory, disk)

• Pod status and restart counts

• Persistent volume status and capacity

• Certificate expiration dates

• etcd cluster health and performance

• Network connectivity between nodes

Node Management

Adding Worker Nodes:

1. Prepare new node with required OS and network configuration

2. Install RKE2 agent with cluster token

3. Join cluster and verify node registration

4. Label node appropriately for workload scheduling

5. Verify network connectivity between nodes

Node Maintenance:

bash

Check cluster status

kubectl get nodes

kubectl get pods --all-namespaces | grep -v Running

Check resource utilization

kubectl top nodes

kubectl top pods --all-namespaces --sort-by=memory

Check persistent volumes

kubectl get pv,pvc --all-namespaces

Check certificates

rke2 cert check

Verify etcd health

kubectl exec -n kube-system etcd-master-1 -- etcdctl endpoint health --cluster

 Copyright @2024 ZBlox. All Rights Reserved 3

Node Replacement:

Cluster Upgrades

RKE2 Version Upgrades:

bash

Drain node for maintenance

kubectl drain worker-node-3 --ignore-daemonsets --delete-emptydir-data

Perform maintenance (updates, hardware changes, etc.)

Return node to service

kubectl uncordon worker-node-3

Verify pods are scheduling correctly

kubectl get pods -o wide | grep worker-node-3

bash

Remove failed node from cluster

kubectl delete node worker-node-failed

Clean up node-specific resources

kubectl get pv | grep worker-node-failed

kubectl delete pv <persistent-volume-names>

Deploy replacement node following standard procedure

Update load balancer configuration if needed

 Copyright @2024 ZBlox. All Rights Reserved 4

Troubleshooting Common Issues

Node Not Ready:

1. Check system resources (CPU, memory, disk)

2. Verify network connectivity between nodes

3. Check disk space and inode usage

4. Validate certificates and tokens

5. Restart RKE2 service if needed

Pod Scheduling Issues:

1. Check node resources and taints

2. Verify persistent volume availability

3. Review resource requests and limits

4. Check node labels and selectors

5. Examine scheduler logs for errors

etcd Issues:

bash

Check current version

rke2 --version

Plan upgrade - check release notes and compatibility

Download new RKE2 version

curl -sSL https://get.rke2.io | INSTALL_RKE2_VERSION="v1.28.5+rke2r1" sh

Upgrade control plane nodes one at a time

systemctl stop rke2-server

systemctl start rke2-server

Verify control plane health between upgrades

kubectl get nodes

Upgrade worker nodes (can be done in batches)

systemctl stop rke2-agent

systemctl start rke2-agent

 Copyright @2024 ZBlox. All Rights Reserved 5

1. Check etcd member health and logs

2. Verify disk performance (etcd is disk I/O sensitive)

3. Monitor network latency between etcd nodes

4. Check for disk space and fragmentation

5. Consider etcd defragmentation if needed

Database Operations

PostgreSQL Cluster Management

Patroni Cluster Health:

Daily Maintenance Tasks:

• Monitor replication lag and sync status

• Check disk space and connection counts

• Review slow query logs

• Verify backup completion

• Monitor connection pool status (PgBouncer)

Performance Monitoring:

bash

Check cluster status

patronictl -c /etc/patroni/patroni.yml list

Check replication lag

patronictl -c /etc/patroni/patroni.yml list --format json | jq '.[] | select(.Role == "Replica") | .Lag'

Manual failover (if needed)

patronictl -c /etc/patroni/patroni.yml switchover

 Copyright @2024 ZBlox. All Rights Reserved 6

Backup and Recovery:

MongoDB Replica Set Management

Replica Set Health:

sql

-- Check active connections

SELECT count(*) as active_connections, state

FROM pg_stat_activity

GROUP BY state;

-- Monitor replication lag

SELECT client_addr, state, sent_lsn, write_lsn, flush_lsn, replay_lsn,

 write_lag, flush_lag, replay_lag

FROM pg_stat_replication;

-- Check database sizes

SELECT datname, pg_size_pretty(pg_database_size(datname))

FROM pg_database

ORDER BY pg_database_size(datname) DESC;

-- Identify slow queries

SELECT query, mean_exec_time, calls, total_exec_time

FROM pg_stat_statements

ORDER BY mean_exec_time DESC

LIMIT 10;

bash

Full backup using pg_basebackup

pg_basebackup -h postgresql-primary -D /backup/postgres-$(date +%Y%m%d) -Ft -z -P

WAL archiving verification

ls -la /backup/postgres-wal/ | tail -20

Point-in-time recovery test (on standby system)

pg_ctl stop -D /var/lib/postgresql/data

rm -rf /var/lib/postgresql/data/*

pg_basebackup -h postgresql-primary -D /var/lib/postgresql/data -Fp -Xs -P

Configure recovery.conf for target time

pg_ctl start -D /var/lib/postgresql/data

 Copyright @2024 ZBlox. All Rights Reserved 7

Maintenance Operations:

Backup Procedures:

javascript

// Connect to MongoDB primary

rs.status()

rs.printSlaveReplicationInfo()

db.runCommand({replSetGetStatus: 1})

// Check oplog size and utilization

db.oplog.rs.find().limit(5).sort({$natural:-1}).pretty()

db.runCommand({collStats: "oplog.rs"})

javascript

// Add new replica set member

rs.add({host: "mongodb-4:27017", priority: 0, votes: 0})

// Remove replica set member

rs.remove("mongodb-old:27017")

// Step down primary for maintenance

rs.stepDown(120)

// Compact collections (during maintenance window)

db.runCommand({compact: "large_collection", force: true})

bash

Create consistent backup using mongodump

mongodump --host mongodb-primary:27017 --authenticationDatabase admin \

 --username backup-user --password <password> \

 --out /backup/mongodb-$(date +%Y%m%d)

Backup with oplog for point-in-time recovery

mongodump --host mongodb-primary:27017 --authenticationDatabase admin \

 --username backup-user --password <password> \

 --oplog --out /backup/mongodb-pit-$(date +%Y%m%d)

Verify backup integrity

mongorestore --dry-run --dir /backup/mongodb-$(date +%Y%m%d)

 Copyright @2024 ZBlox. All Rights Reserved 8

Redis Cluster Operations

Cluster Health Monitoring:

Scaling Operations:

Backup and Recovery:

bash

Check cluster status

redis-cli --cluster check redis-1:6379

Monitor cluster info

redis-cli -h redis-1 -p 6379 cluster info

redis-cli -h redis-1 -p 6379 cluster nodes

Check memory usage

redis-cli -h redis-1 -p 6379 info memory

bash

Add new node to cluster

redis-cli --cluster add-node redis-4:6379 redis-1:6379

Reshard cluster to distribute data

redis-cli --cluster reshard redis-1:6379 --cluster-from <source-node-id> \

 --cluster-to <target-node-id> --cluster-slots 1000

Remove node from cluster

redis-cli --cluster del-node redis-1:6379 <node-id>

bash

Create RDB backup

redis-cli -h redis-1 -p 6379 BGSAVE

redis-cli -h redis-1 -p 6379 LASTSAVE

Copy RDB files for backup

for i in {1..3}; do

scp redis-${i}:/var/lib/redis/dump.rdb /backup/redis-${i}-$(date +%Y%m%d).rdb

done

Monitor AOF rewrite (if AOF enabled)

redis-cli -h redis-1 -p 6379 info persistence

 Copyright @2024 ZBlox. All Rights Reserved 9

EMQX Message Broker Operations

Cluster Management

Health Monitoring:

Performance Monitoring:

Maintenance Operations:

bash

Check cluster status via API

curl -u admin:password http://emqx-1:18083/api/v5/cluster

Monitor node health

curl -u admin:password http://emqx-1:18083/api/v5/nodes

Check client connections

curl -u admin:password http://emqx-1:18083/api/v5/clients | jq '.meta.count'

Monitor topic subscriptions

curl -u admin:password http://emqx-1:18083/api/v5/subscriptions | jq '.meta.count'

bash

Check message throughput

curl -u admin:password http://emqx-1:18083/api/v5/stats | jq '.messages'

Monitor connection rates

curl -u admin:password http://emqx-1:18083/api/v5/stats | jq '.connections'

Check memory usage per node

curl -u admin:password http://emqx-1:18083/api/v5/nodes | jq '.[] | {node: .node, memory: .memory_used}'

 Copyright @2024 ZBlox. All Rights Reserved 10

Service Function Deployment

Deployment Procedures

Standard Service Deployment:

Blue-Green Deployment:

bash

Gracefully stop node for maintenance

emqx_ctl cluster leave

Add node back to cluster

emqx_ctl cluster join emqx@emqx-1

Rotate logs

emqx_ctl log set-level warning

bash

Deploy new service version

kubectl apply -f service-manifests/

Monitor rollout status

kubectl rollout status deployment/user-management-service

Verify deployment health

kubectl get pods -l app=user-management-service

kubectl logs -l app=user-management-service --tail=100

 Copyright @2024 ZBlox. All Rights Reserved 11

Canary Deployment:

Service Health Monitoring

Health Check Endpoints: Each service function provides standard health endpoints:

bash

Deploy green version alongside blue

kubectl apply -f green-deployment.yaml

Test green deployment

kubectl port-forward service/user-service-green 8080:8080

Run smoke tests against localhost:8080

Switch traffic to green

kubectl patch service user-service -p '{"spec":{"selector":{"version":"green"}}}'

Monitor and rollback if needed

kubectl patch service user-service -p '{"spec":{"selector":{"version":"blue"}}}'

bash

Deploy canary version (10% traffic)

kubectl apply -f canary-deployment.yaml

Configure traffic split in ingress/service mesh

kubectl patch virtualservice user-service --type merge -p '

{

 "spec": {

 "http": [{

 "match": [{"headers": {"canary": {"exact": "true"}}}],

 "route": [{"destination": {"host": "user-service", "subset": "canary"}}]

 }, {

 "route": [

 {"destination": {"host": "user-service", "subset": "stable"}, "weight": 90},

 {"destination": {"host": "user-service", "subset": "canary"}, "weight": 10}

]

 }]

 }

}'

Monitor canary metrics and gradually increase traffic

If successful, promote canary to stable

 Copyright @2024 ZBlox. All Rights Reserved 12

• /health/live - Liveness probe

• /health/ready - Readiness probe

• /metrics - Prometheus metrics

Deployment Validation:

Rollback Procedures

Automatic Rollback Triggers:

• Health check failures exceeding threshold

• Error rate above acceptable limits

• Response time degradation

• Resource exhaustion

Manual Rollback:

bash

Check service function registration

kubectl exec -it service-registry-pod -- \

curl http://localhost:8080/services | jq '.[] | select(.name=="UserManagement")'

Verify MQTT topic subscription

kubectl exec -it emqx-1 -- \

 emqx_ctl subscriptions list | grep "service/UserManagement"

Test service function call

kubectl exec -it platform-client -- \

 platform-cli call UserManagement getUser --user-id test-123

bash

Rollback to previous version

kubectl rollout undo deployment/user-management-service

Rollback to specific revision

kubectl rollout undo deployment/user-management-service --to-revision=2

Check rollback status

kubectl rollout status deployment/user-management-service

 Copyright @2024 ZBlox. All Rights Reserved 13

Monitoring and Alerting

Monitoring Stack Overview

Prometheus Configuration:

• Scrape intervals: 15s for infrastructure, 30s for applications

• Retention: 15 days for high-resolution, 1 year for downsampled

• Alert manager for notification routing

• Federation for multi-cluster scenarios

Key Metrics to Monitor:

Infrastructure Metrics:

• Node CPU, memory, disk, network utilization

• Kubernetes resource usage and capacity

• Database connection counts and performance

• Message broker throughput and latency

Application Metrics:

• Service function request rates and latency

• Error rates and types

• Business metrics (user registrations, orders, etc.)

• Transaction success rates

System Metrics:

• Certificate expiration dates

• Backup completion status

• Security events and access patterns

• Compliance metrics

Alert Configuration

Critical Alerts (Page immediately):

 Copyright @2024 ZBlox. All Rights Reserved Copyright @2024 ZBlox. All Rights Reserved 14

Warning Alerts (Notify during business hours):

yaml

Node down

- alert: NodeDown

expr: up{job="node-exporter"} == 0

for: 5m

labels:

severity: critical

annotations:

summary: "Node {{ $labels.instance }} is down"

Database connection failure

- alert: DatabaseDown

expr: postgresql_up == 0

for: 2m

labels:

severity: critical

annotations:

summary: "PostgreSQL database is unreachable"

High error rate

- alert: HighErrorRate

expr: (rate(http_requests_total{status=~"5.."}[5m]) / rate(http_requests_total[5m])) > 0.1

for: 5m

labels:

severity: critical

annotations:

summary: "High error rate detected: {{ $value | humanizePercentage }}"

15

Dashboard Configuration

Infrastructure Dashboard:

• Node resource utilization trends

• Kubernetes cluster health

• Database performance metrics

• Network traffic and latency

Application Dashboard:

• Service function performance

• Business metrics and KPIs

• User activity and engagement

• Transaction volumes and success rates

Operations Dashboard:

• Deployment status and history

• Alert summary and trends

• Backup and maintenance status

• Security events and compliance

yaml

High memory usage

- alert: HighMemoryUsage

expr: (node_memory_MemTotal_bytes - node_memory_MemAvailable_bytes) / node_memory_MemTotal_bytes

for: 10m

labels:

severity: warning

annotations:

summary: "High memory usage on {{ $labels.instance }}: {{ $value | humanizePercentage }}"

Certificate expiring

- alert: CertificateExpiring

expr: (x509_cert_expiry - time()) / 86400 < 30

for: 1h

labels:

severity: warning

annotations:

summary: "Certificate expires in {{ $value }} days"

 Copyright @2024 ZBlox. All Rights Reserved 16

Backup and Recovery

Backup Strategy

Recovery Point Objectives (RPO):

• Critical data: 15 minutes

• Application data: 1 hour

• Configuration data: 24 hours

• Log data: 24 hours

Recovery Time Objectives (RTO):

• Database recovery: 30 minutes

• Service restoration: 15 minutes

• Full system recovery: 4 hours

Database Backups

PostgreSQL Backup Schedule:

MongoDB Backup Schedule:

Configuration Backups

bash

Daily full backup

0 2 * * * /usr/local/bin/pg-backup.sh full

Hourly incremental (WAL archiving)

0 * * * * /usr/local/bin/pg-backup.sh wal

Weekly verification

0 3 * * 0 /usr/local/bin/pg-backup-verify.sh

bash

Daily backup with oplog

0 3 * * * /usr/local/bin/mongo-backup.sh

Weekly full backup verification

0 4 * * 0 /usr/local/bin/mongo-backup-verify.sh

 Copyright @2024 ZBlox. All Rights Reserved 17

Kubernetes Resources:

Application Configuration:

Disaster Recovery Procedures

Site Failover Checklist:

 Assess primary site status and recovery timeline

 Activate disaster recovery team and communication plan

 Initiate DNS failover to secondary site

 Restore databases from latest backups

 Deploy service functions to secondary site

 Verify service functionality and data integrity

 Communicate status to stakeholders

 Monitor performance and stability

Communication Template:

bash

Backup all cluster resources

kubectl get all --all-namespaces -o yaml > cluster-backup-$(date +%Y%m%d).yaml

Backup etcd (automated)

etcdctl snapshot save /backup/etcd-snapshot-$(date +%Y%m%d-%H%M).db

bash

Service function configurations

kubectl get configmaps,secrets --all-namespaces -o yaml > config-backup-$(date +%Y%m%d).yaml

EMQX configuration

cp /etc/emqx/emqx.conf /backup/emqx-config-$(date +%Y%m%d).conf

 Copyright @2024 ZBlox. All Rights Reserved 18

Incident Response

Incident Classification

Severity Levels:

• SEV1 (Critical): Complete service outage or data loss

• SEV2 (High): Major feature unavailable or significant performance degradation

• SEV3 (Medium): Minor feature impact or isolated issues

• SEV4 (Low): Cosmetic issues or feature requests

Incident Response Process

SEV1/SEV2 Response:

Subject: [INCIDENT] Platform Failover to DR Site - Service Restored

We have successfully completed failover to our disaster recovery site due to [brief description of

issue].

Current Status: All services operational at DR site

Impact: Approximately [X] minutes of service disruption

Next Steps: [Brief description of recovery plan]

We will provide updates every [interval] until normal operations resume.

 Copyright @2024 ZBlox. All Rights Reserved 19

1. Immediate Response (within 5 minutes)

• Acknowledge alert and assess impact

• Notify incident commander and on-call team

• Post initial status update

2. Investigation (within 15 minutes)

• Gather initial diagnostics

• Identify potential root cause

• Implement immediate mitigation if possible

3. Communication (within 30 minutes)

• Update status page with customer communication

• Notify internal stakeholders

• Establish communication cadence

4. Resolution

• Implement fix and verify resolution

• Monitor for stability

• Provide final status update

Communication Templates

Initial Incident Notice:

Resolution Notice:

Subject: [INCIDENT] Service Degradation - Investigating

We are currently investigating reports of [brief description of issue].

Impact: [Description of customer impact]

Status: Investigating

ETA: Updates every 30 minutes

We apologize for any inconvenience and will provide updates as we learn more.

 Copyright @2024 ZBlox. All Rights Reserved 20

Post-Incident Review

Post-Mortem Template:

1. Incident Summary

• Timeline of events

• Customer impact assessment

• Root cause analysis

2. Response Evaluation

• What went well

• What could be improved

• Response time analysis

3. Action Items

• Immediate fixes

• Long-term improvements

• Process changes

• Assigned owners and deadlines

Maintenance Procedures

Scheduled Maintenance

Monthly Maintenance Windows:

Subject: [RESOLVED] Service Issue - All Systems Operational

The service issue affecting [description] has been resolved as of [timestamp].

Root Cause: [Brief technical summary]

Resolution: [Summary of fix applied]

Prevention: [Brief note about prevention measures]

All services are now operating normally. A detailed post-mortem will be published within 5 business

days.

Thank you for your patience during this incident.

 Copyright @2024 ZBlox. All Rights Reserved 21

• First Saturday of each month, 2:00-6:00 AM UTC

• Database maintenance and optimization

• Security updates and patches

• Certificate renewals

• Performance tuning

Quarterly Maintenance:

• First Saturday of quarter, 2:00-8:00 AM UTC

• Major version upgrades

• Infrastructure scaling

• Disaster recovery testing

• Security audits

Maintenance Checklist

Pre-Maintenance:

 Schedule maintenance window with stakeholders

 Notify customers 72 hours in advance

 Prepare rollback procedures

 Verify backup completion

 Test maintenance procedures in staging

During Maintenance:

 Follow documented procedures exactly

 Monitor system health continuously

 Document any deviations or issues

 Validate each step before proceeding

 Test critical functionality after changes

Post-Maintenance:

 Verify all services are healthy

 Run smoke tests on critical functions

 Monitor for 24 hours post-maintenance

 Update documentation if procedures changed

 Conduct maintenance retrospective

 Copyright @2024 ZBlox. All Rights Reserved 22

Security Operations

Security Monitoring

Daily Security Checks:

• Review authentication failures and patterns

• Monitor certificate status and expiration

• Check for security updates and patches

• Analyze access logs for anomalies

Security Metrics:

• Failed authentication attempts

• Unusual access patterns

• Certificate expiration tracking

• Security patch compliance

• Vulnerability scan results

Certificate Management

Certificate Rotation:

Access Control Audit

Quarterly Access Review:

bash

List expiring certificates

find /etc/ssl/certs -name "*.crt" -exec openssl x509 -enddate -noout -in {} \; -print | grep -B1 "notAfter.*$(date

Renew Let's Encrypt certificates

certbot renew --dry-run

certbot renew

Update Kubernetes secrets

kubectl create secret tls platform-tls --cert=platform.crt --key=platform.key --dry-run=client -o yaml | kubectl apply -f -

 Copyright @2024 ZBlox. All Rights Reserved 23

• Review user accounts and permissions

• Audit service account permissions

• Check for orphaned accounts

• Validate RBAC configurations

• Review network access controls

Conclusion

This operations runbook provides the foundation for reliable platform operations. Regular

review and updates ensure procedures remain current and effective. All team members

should be familiar with their relevant sections and participate in regular training and drills.

Key Success Factors:

• Automation: Automate routine tasks to reduce human error

• Monitoring: Comprehensive monitoring enables proactive issue resolution

• Documentation: Keep procedures current and accessible

• Training: Regular training ensures team readiness

• Continuous Improvement: Learn from incidents and improve procedures

Regular practice of these procedures through game days and incident drills ensures the

team remains prepared for any operational scenario.

 Copyright @2024 ZBlox. All Rights Reserved 24

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

